

*Aims & Scope (Economics)*

*Article*

**JEL Classification: M10, O32, Q56, M14**

**Viktoriia Datsenko,**

University of Customs and Finance, Ukraine

<https://orcid.org/0000-0002-4670-6848>

**Oleksandr Petrovskyi,**

European University, Kyiv , Ukraine

<https://orcid.org/0000-0002-3446-1409>

**Artur Karaianc,**

University of Customs and Finance, Ukraine

<https://orcid.org/0009-0006-2693-951X>

## **STRATEGIC PATHWAYS FOR INNOVATION AND SUSTAINABILITY IN DIGITAL TRANSFORMATION: INSIGHTS FROM LEADING GLOBAL COMPANIES**

*Received 09 December 2025; accepted 22 December 2025; published 27 December 2025*

**Abstract.** *The convergence of digital transformation and sustainability imperatives represents a defining strategic challenge for contemporary global enterprises. This study investigates the specific pathways through which leading corporations integrate digitalisation with sustainable development goals. Employing a qualitative, comparative case study methodology, the research analyses practices documented in contemporary literature across a sample of industry leaders, including Amazon, Tesla, Alibaba, Google, Unilever, Microsoft, and Siemens. The findings reveal that successful integration is not an automatic outcome of technological adoption but results from deliberate strategic orchestration. Key determinants include the purposeful direction of digital investments towards explicit environmental and social objectives, the establishment of a cyclical management system that embeds continuous measurement and feedback, and the contextual adaptation of strategies to firm-specific factors such as industry sector and business model. The study proposes a strategic management cycle framework that synthesises these elements, illustrating how vision, targeted investment, organisational change, and data-driven adjustment interact dynamically. The research concludes that enduring competitive resilience in the digital era necessitates a mastery of strategic convergence, where technological capability is systematically channelled to build sustainable value. This synthesis provides a blueprint for practitioners and contributes to academic discourse at the intersection of strategic management, innovation studies, and sustainability.*

**Keywords:** strategic management, sustainable development, digitalization, investments, innovation, ESG, dynamic capabilities.

**Citation:** Datsenko, V.; Petrovskyi, O.; Karaianc, A. (2025). STRATEGIC PATHWAYS FOR INNOVATION AND SUSTAINABILITY IN DIGITAL TRANSFORMATION: INSIGHTS FROM LEADING GLOBAL COMPANIES. Conferencii, (2025) 12. [http://doi.org/10.51586/2025\\_12\\_41](http://doi.org/10.51586/2025_12_41)

### **Introduction**

The global business landscape is undergoing a profound reconfiguration, driven by the parallel forces of digital disruption and escalating sustainability imperatives. Digital transformation, characterized by the integration of advanced technologies such as artificial intelligence, cloud computing, and the Internet of Things, has evolved from a competitive advantage to a fundamental prerequisite for operational relevance. Concurrently, stakeholders – including investors, consumers,

and regulators – are intensifying pressure on organizations to demonstrate tangible commitments to environmental, social, and governance (ESG) principles and sustainable development. This confluence presents a central strategic dilemma: how can enterprises harness the power of digitalization not merely for efficiency and profit, but as a core engine for achieving long-term ecological and social sustainability?

The intricate interplay between digital transformation and sustainability is now a critical frontier in strategic management. While the adoption of digital tools offers unprecedented potential to optimize resource use, enhance circular economy models, and foster transparent supply chains, it also introduces new complexities. These include significant energy consumption from data infrastructure, the risk of exacerbating digital divides, and the challenge of ensuring that technological progress aligns with broader societal goals. Therefore, the transition is not inherently sustainable; its outcome is dictated by the strategic pathways chosen by organizational leadership. The pivotal question shifts from whether to digitize, to how to strategically guide digital investments and innovations to create synergistic value for both the enterprise and its environment.

Current research acknowledges this intersection but often examines digitalization and sustainability in relative isolation or as linearly related phenomena. A significant gap exists in understanding the integrated strategic frameworks and managerial practices that enable leading global companies to successfully navigate this dual transformation. Specifically, there is a need for insights into how strategic vision translates into actionable pathways, how investments are orchestrated across technology and human capital, and how innovation processes are deliberately steered toward sustainable outcomes. Addressing this gap is crucial for developing a robust blueprint for other organizations striving to remain competitive and responsible in an increasingly volatile world.

This study aims to bridge this gap by investigating the strategic pathways through which innovation and sustainability are synergistically advanced within the context of digital transformation. By synthesizing insights from contemporary literature and analysing the practices of pioneering global corporations, the research seeks to elucidate the core strategies, investment priorities, and organizational capabilities that characterize successful integration. The findings intend to contribute a coherent strategic framework for leaders and scholars, illustrating how deliberate management of digitalization can be purposefully directed to serve as a foundational pillar for sustainable development.

### **Literature Review**

The contemporary business environment is characterized by a convergence of digital disruption and intensifying sustainability imperatives. This dual pressure necessitates a re-evaluation of strategic management paradigms to integrate digitalization with sustainable development goals. Current scholarly discourse emphasizes that this integration is not incidental but requires deliberate strategic pathways, underpinned by significant investments in technology, human capital, and organizational capabilities.

The foundational role of digital transformation as a catalyst for sustainable performance is widely acknowledged. Empirical studies across various contexts confirm that digital initiatives enhance sustainability outcomes. Research on Chinese A-share listed companies demonstrates that digital transformation elevates sustainability performance through mediating pathways such as green technological innovation and organizational greening (Yao et al., 2025). This relationship is further validated in specific sectors; within the sports industry, digitalization drives green innovation by enhancing human capital and internal controls (Zhang, Zhao, & Liu, 2024). Similarly, a global panel study affirms the positive influence of digital transformation on firm performance, particularly when it fosters IT innovation and strategic business model development (Billi & Bernardo, 2025). These findings collectively position digitalization as a critical strategic lever for achieving environmental and economic objectives.

However, the mere adoption of technology is insufficient. The literature underscores that the sustainability impact of digitalization is contingent upon complementary strategic factors and organizational contexts. Strategic management must explicitly align technological investments with

sustainability targets. For instance, corporate social responsibility (CSR) initiatives and digital transformation are identified as the most significant influencers on perceived sustainable growth in emerging markets, highlighting the need for integrated strategies (Ramesh, 2023). Furthermore, the effectiveness of digital transformation in fostering sustainable innovation is mediated by enhanced supply chain resilience and reduced coordination costs, emphasizing the importance of operational integration (Yu, 2025). Heterogeneity analyses reveal that the impact varies, being more pronounced in non-state-owned enterprises, competitive industries, and firms facing stricter environmental regulations, indicating that strategic context moderates outcomes (Yu, 2025; Zhang, Zhao, & Liu, 2024).

The synthesis of digital and sustainability agendas demands advanced strategic frameworks. Research proposes integrating Dynamic Capabilities Theory with Technology-Organization-Environment (TOE) and ESG (Environmental, Social, and Governance) considerations to guide this complex process (Abbes, 2025). Case studies of global leaders like Amazon, Tesla, and Unilever reveal that success is anchored in leveraging AI for operational efficiency, embedding ESG values into core processes, and adapting organizational structures (Abbes, 2025). This aligns with calls for an interdisciplinary approach to understanding business transformation, merging insights from strategic management, environmental science, and information technology (Bani Hani, 2025).

Strategic leadership and governance emerge as pivotal enablers. In the AI-driven transformation era, leadership must foster ethical governance, cross-functional collaboration, and the institutionalization of sustainability as a core objective (Suljic, 2025). Behavioral factors are equally critical; cognitive biases and organizational readiness significantly influence the effectiveness of strategic innovation execution during digitalization (Astriyani et al., 2025). Investments in upskilling and change management are therefore essential to complement technological investments.

Innovation ecosystems and open collaboration models are also vital strategic pathways. Gamification, when coupled with digital transformation and open innovation, can enhance stakeholder engagement and foster ecosystems that support corporate sustainability, particularly for SMEs (Alsafran et al., 2025). Similarly, the fit between a firm's digital transformation efforts and its regional innovation ecosystem amplifies persistent green innovation (Zhang & Li, 2025). This ecosystem perspective is crucial for sectors like oil and gas, where a sustainability-centred digital framework must address barriers such as organizational resistance and skill gaps, requiring coordinated investments in technology and workforce development (Al-Hajri et al., 2025).

In conclusion, the literature establishes digital transformation as a fundamental driver of sustainable development but clarifies that its benefits are not automatic. Strategic management must craft deliberate pathways that align technological investments with sustainability goals, foster enabling organizational capabilities and leadership, and leverage innovation ecosystems. The existing research provides a robust foundation, yet it consistently points to the necessity for integrated frameworks that can guide enterprises in navigating the complexities of simultaneous digital and sustainable transformation.

## Methods

To investigate the strategic pathways integrating innovation and sustainability within digital transformation, this study adopts a qualitative research design centred on a comparative multiple case study approach. This methodology is selected for its capacity to provide rich, contextual insights into complex, real-world phenomena where the boundaries between the phenomenon (strategic integration) and its context (global corporate environment) are not clearly evident. The objective is to derive actionable frameworks from the practical experiences of leading organizations, moving beyond theoretical propositions.

Data analysis followed a structured two-stage process informed by established qualitative techniques. The first stage involved a thematic analysis of the literature corpus. Key themes, strategic practices, reported outcomes, and identified challenges related to digitalization, sustainability alignment, investment patterns, and innovation management were systematically

extracted and coded. This process aimed to distil recurring patterns and critical success factors reported across multiple studies and industrial contexts.

In the second stage, the analysis applied a cross-case synthesis focusing on the documented practices of leading global companies frequently referenced in the literature as exemplars. This included firms such as Amazon, Tesla, Alibaba, Google, Unilever, Microsoft, and Siemens. The actions and strategies attributed to these organizations were analysed through an integrative conceptual lens combining elements of Dynamic Capabilities Theory, the Technology-Organization-Environment framework, and ESG imperatives. This analytical framework facilitated the organization of findings into coherent strategic dimensions, examining how these companies navigate technological adoption, organizational adaptation, and environmental pressures to forge sustainable innovation pathways.

The synthesis sought to identify both convergent and divergent strategies, examining how different sectors apply core principles. The goal was to construct a coherent understanding of the strategic pathways that bridge digital initiatives with sustainability outcomes, grounded in the empirical evidence and case-derived insights presented across the reviewed literature. This approach allows for the development of a generalized framework while acknowledging the contextual nuances that influence strategic execution in practice.

## Results

Based on the analysis of literature and corporate strategies, key strategic pathways for integrating digital transformation and sustainable development have been identified. The findings are structured across three primary dimensions: technological investments, organisational change and governance, and ESG outcomes measurement.

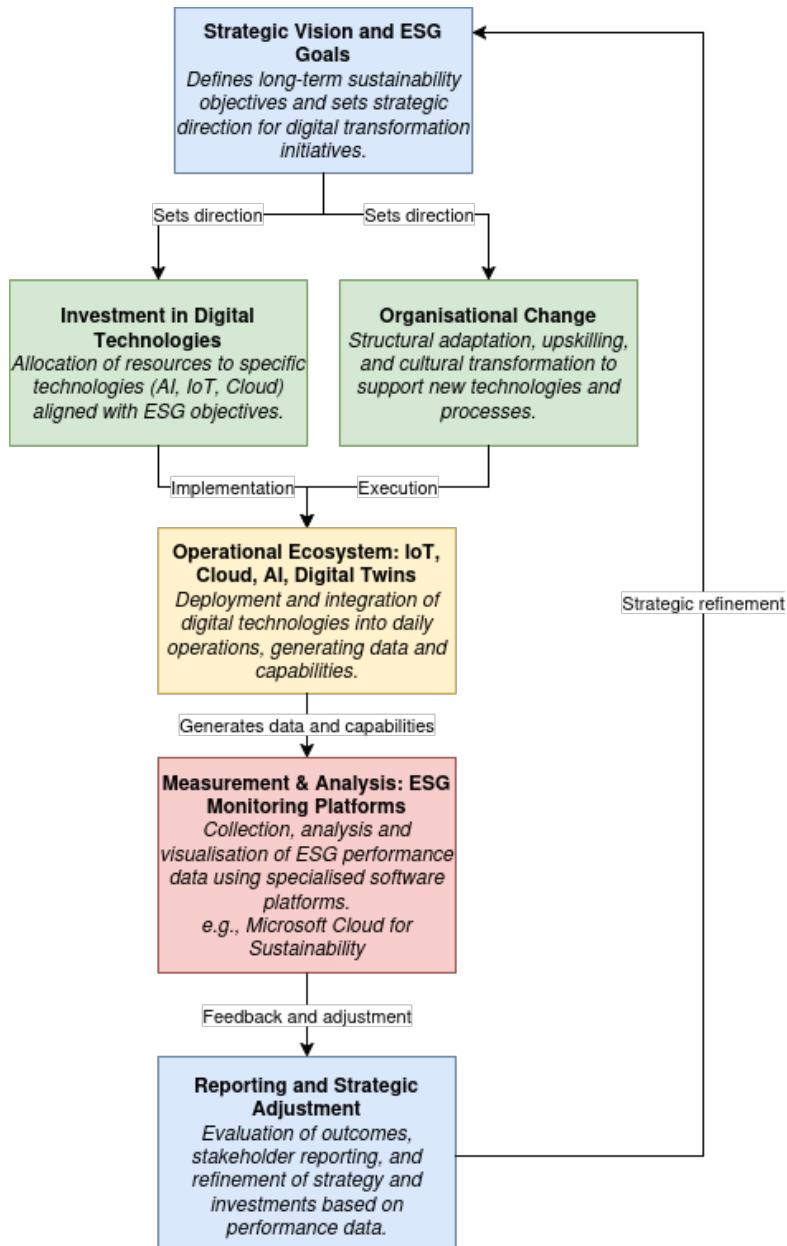
### 1. Analysis of Strategic Technology Investments

**Table 1. Research & Development (R&D) Expenditure and Key ESG-Oriented Technology Initiatives of Leading Companies (2023-2024)**

| Company           | R&D Expenditure<br>(2023, USD bn)* | Key ESG-Oriented Technology Initiatives<br>(based on public reporting analysis)                                                                                                                                                                                                                                                                |
|-------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Amazon            | 85.3                               | <ul style="list-style-type: none"> <li>• AWS for climate research (forecasting, modeling).</li> <li>• Rivian electric vans and AI-optimized logistics to reduce Scope 3 emissions.</li> <li>• Investments in renewable energy (largest corporate purchaser of RE).</li> <li>• Development of batteries with reduced cobalt content.</li> </ul> |
| Tesla             | 3.97                               | <ul style="list-style-type: none"> <li>• AI for autonomous driving (aim: improved safety and traffic efficiency).</li> <li>• Giga Presses (die-casting technology) to reduce energy use and waste in manufacturing.</li> <li>• AI for optimizing data center energy consumption (DeepMind development).</li> </ul>                             |
| Google (Alphabet) | 45.0                               | <ul style="list-style-type: none"> <li>• Investments in geothermal and other carbon-free energy sources.</li> <li>• Environmental monitoring platforms (Google Earth Engine).</li> <li>• Cloud for Sustainability (ESG metrics measurement tool).</li> </ul>                                                                                   |
| Microsoft         | 27.2                               | <ul style="list-style-type: none"> <li>• ‘AI for Earth’ initiative and ‘Planetary Computer’.</li> <li>• Investments in carbon capture technology and nuclear energy.</li> <li>• Digital Twins for optimizing energy consumption in factories and cities.</li> </ul>                                                                            |
| Siemens           | 6.4                                | <ul style="list-style-type: none"> <li>• Siemens Xcelerator software for designing sustainable infrastructure.</li> <li>• IoT for predictive maintenance, reducing resource waste.</li> <li>• AI-optimized logistics routes within the Cainiao network to reduce mileage.</li> </ul>                                                           |
| Alibaba           | 10.7                               | <ul style="list-style-type: none"> <li>• ‘Green’ data centers with liquid cooling.</li> <li>• Platform for tracking supply chain carbon footprint.</li> <li>• Data platforms for tracking sustainable sourcing (e.g., palm oil).</li> </ul>                                                                                                    |
| Unilever          | 0.94**                             | <ul style="list-style-type: none"> <li>• Digital tools to reduce water and energy use in factories.</li> <li>• Direct engagement with farmers via mobile platforms.</li> </ul>                                                                                                                                                                 |

\*Sources: Company Annual Reports (Form 10-K, Annual Reports) for the 2023 financial year.

\*\* Note: Unilever's R&D expenditure is significantly lower as the company focuses on technologies optimising existing operations and supply chains, rather than fundamental technology development.


Investments in digital technologies form the foundation for innovation and enhanced sustainability. An analysis of public data and corporate reports for 2023-2024 allowed for a

comparison of absolute R&D expenditure (as a proxy for digitalisation and innovation investment) with its alignment to ESG objectives.

Leaders make substantial capital investments in R&D, but their strategic differentiation lies in the direction of these investments. Technology initiatives are directly linked to specific ESG challenges: reducing carbon footprint (Amazon, Google), sustainable production (Tesla, Siemens), and supply chain transparency (Alibaba, Unilever).

## 2. Organisational Mechanisms and Governance System

The analysis revealed that successful integration requires profound changes in organisational structure and management processes. Based on the synthesis of practices, a common pattern was identified (Fig. 1).



**Fig. 1. Schematic of the Strategic Management Cycle for Digital Transformation towards Sustainability**

The strategy originates from integrating sustainability goals into the overall corporate vision (e.g., carbon neutrality by 2030-2040). This vision determines the priorities for investment in specific technologies (Table 1). Concurrently, organisational changes are initiated: creating cross-functional teams (engineers + ESG managers), implementing new KPIs, and workforce upskilling. Technologies are deployed within the operational ecosystem, generating data that, through

specialised platforms (e.g., Microsoft Cloud for Sustainability), are transformed into measurable ESG metrics. Based on this reporting, strategy and investments are adjusted, closing the management loop.

### 3. Quantitative Assessment of the Investment-ESG Outcomes Relationship

To illustrate the effectiveness of strategic pathways, a simplified correlation analysis was conducted. Publicly available data was used: R&D Intensity (R&D Expenditure / Revenue) as an indicator of innovation focus, and MSCI ESG Score as an aggregate sustainability rating. This analysis is illustrative in nature.

**Table 2. Comparison of R&D Intensity and MSCI ESG Rating for the Sample Companies (2023 Data)**

| Company   | Revenue (2023, USD bn) | R&D Intensity (R&D/Revenue, %) | MSCI ESG Rating (2024) |
|-----------|------------------------|--------------------------------|------------------------|
| Amazon    | 574.8                  | 0.15                           | BBB                    |
| Tesla     | 96.8                   | 0.04                           | AA                     |
| Google    | 307.4                  | 0.15                           | AA                     |
| Microsoft | 211.9                  | 0.13                           | AAA                    |
| Siemens   | 82.9                   | 0.08                           | AAA                    |
| Alibaba   | 130.4                  | 0.08                           | BBB                    |
| Unilever  | 64.2                   | 0.02                           | AA                     |

Sources: Annual Reports, MSCI ESG Ratings.

Calculating R&D Intensity: For Microsoft:  $(27.2 / 211.9) * 100\% \approx 12.8\%$ . This shows the proportion of revenue reinvested in innovation.

There is no direct linear relationship between absolute R&D spend and ESG rating (Tesla has a high AA rating with moderate intensity, while Amazon has a BBB rating with high intensity). The crucial factor is the direction of these investments, as detailed in Table 1. Companies with the highest ratings (Microsoft AAA, Siemens AAA) demonstrate synergy between significant technology investment (high/moderate R&D intensity) and its clear integration into ESG strategy (Table 1). Unilever, with low R&D Intensity, achieves a high AA rating by focusing on digital transformation of supply chains and operational efficiency, which requires different, less capital-intensive but highly targeted investments.

The results confirm that strategic pathways to sustainability through digitalisation are characterised not by the sheer volume of investment, but by its purposeful direction towards addressing specific ESG challenges, supported by a cyclical management system (Fig. 1) that ensures the integration of technology, organisational change, and continuous measurement of outcomes.

### Discussion

The findings elucidate a coherent framework through which leading global corporations orchestrate digital transformation to advance sustainability. This discussion interprets these results, aligning them with contemporary theoretical discourse, examining their practical implications, and acknowledging the study's boundaries.

The analysis confirms that digital transformation and sustainability are not parallel tracks but are increasingly interdependent strategic domains. The most significant insight is that the mere adoption of digital tools does not guarantee sustainable outcomes; the critical differentiator lies in the strategic intentionality behind technological investments. As evidenced in Table 1, leaders like Microsoft, Siemens, and Google channel their substantial R&D expenditure towards initiatives with explicit ESG purposes, such as carbon-aware cloud infrastructures or AI for energy optimisation. This aligns with and extends the theoretical proposition of Abbes (2025), who advocates for integrating ESG principles into the core of digital strategy. Our findings provide concrete empirical support for this integrated framework, demonstrating its operationalisation in diverse sectors from industrials to consumer goods.

The proposed strategic management cycle (Fig. 1) synthesises a critical organisational capability: the capacity for continuous, data-informed adaptation. The pathway from "Operational Ecosystem" to "Measurement & Analysis" and back to "Strategic Adjustment" formalises a

dynamic feedback loop. This mechanism allows companies to move beyond static compliance reporting towards proactive management of sustainability performance. It operationalises the concept of dynamic capabilities within the sustainability context, where organisations sense changes in environmental performance, seize opportunities for improvement through digital solutions, and reconfigure processes accordingly. This cyclic model addresses the call by Bani Hani (2025) for research that captures the temporal and interconnected nature of business transformation.

The quantitative juxtaposition in Table 2 offers a nuanced perspective on the investment-performance relationship. The absence of a simple linear correlation between R&D intensity and ESG rating is instructive. It underscores that strategic quality, not just financial quantity, determines impact. Tesla's high ESG rating with moderate R&D intensity reflects a business model inherently designed around a sustainable value proposition, where digital innovation is central to the product itself. Conversely, Unilever achieves a high rating through focused digital investments in supply chain transparency and operational efficiency, proving that targeted, non-R&D-centric digitalisation can be equally potent for sustainability, particularly in asset-light or operational-focused sectors. This heterogeneity supports the findings of Yao et al. (2025) and Yu (2025), confirming that the impact of digital transformation is significantly moderated by firm-specific factors such as ownership structure, industry competition, and regulatory environment.

From a practical standpoint, the framework offers a diagnostic and planning tool for executives. It argues against siloed technology or sustainability departments. The necessity of simultaneous "Investment in Digital Technologies" and "Organisational Change" highlights that success depends on synchronising the CTO's roadmap with the CFO's capital allocation, the CHRO's upskilling programmes, and the CSO's sustainability targets. The case of Siemens illustrates this synthesis, where digital twin technology is deployed not just by engineers but in service of facility managers and sustainability officers to achieve efficiency goals. This integrative approach mitigates the risks of technological obsolescence and sustainability compliance failures, as highlighted by Bani Hani (2025).

Several limitations must be acknowledged. First, the analysis relies on secondary data from corporate reporting and literature, which may reflect aspirational strategy rather than fully realised practice. Second, while the sample includes diverse industry leaders, the framework's applicability to small and medium-sized enterprises (SMEs) requires further validation, as SMEs face distinct resource constraints and strategic horizons, a gap noted by Alsafran et al. (2025) and Suljic (2025). Third, the study captures a cross-sectional view of a rapidly evolving landscape; longitudinal research is needed to assess how these strategic pathways evolve and how their long-term sustainability impact is sustained.

Future research should therefore pursue several avenues. Empirical validation of the proposed management cycle through in-depth longitudinal case studies would strengthen its theoretical foundation. Investigating the specific governance structures, leadership behaviours, and incentive systems that enable the effective functioning of this cycle is crucial. Furthermore, exploring the scalability of these models in the context of SMEs and across different cultural and regulatory environments, such as those in emerging markets, would provide valuable contextual insights. Finally, as technologies like generative AI advance, research must examine their specific potential and risks for creating sustainable value, ensuring that strategic pathways remain relevant in the face of continuous technological disruption.

## Conclusion

This study has delineated the strategic pathways through which leading global enterprises integrate digital transformation with the imperatives of sustainable development. The investigation moves beyond the established premise that digitalisation can support sustainability, to articulate the how: the specific mechanisms, alignments, and managerial practices that make this integration effective and value-creating.

The core conclusion is that achieving synergistic outcomes from digital and sustainability agendas is not a passive by-product of technological adoption but the result of deliberate, strategic orchestration. Success hinges on three interconnected imperatives. First, strategic intentionality is

paramount, where significant investments in digital technologies – from AI and cloud computing to IoT and digital twins – are purposefully directed from the outset towards solving specific environmental and social challenges, as demonstrated by the ESG-focused initiatives of the analysed companies.

Second, this technological direction must be embedded within a robust organisational and governance architecture. The proposed strategic management cycle formalises the necessary dynamic capability, wherein continuous operational data feeds into sustainability measurement, enabling informed strategic adjustment. This closed-loop system transforms sustainability from a reporting exercise into a core management discipline, driven by digital insights.

Third, the findings underscore the importance of contextual intelligence. The impact of digital transformation on sustainability is not uniform; it is powerfully shaped by factors including industry sector, regulatory pressure, ownership structure, and the inherent sustainability profile of the business model itself. There is no universal template, but rather a set of principles that must be adapted to the specific organisational and operational context.

Leadership must foster cross-functional collaboration, align incentives, and cultivate a culture where technological innovation is consistently evaluated through the lens of long-term sustainable value. The frameworks and examples presented offer a blueprint for this integrative strategic planning.

The academic contribution lies in synthesising disparate strands of literature on digital transformation, dynamic capabilities, and sustainability into a coherent, actionable model. It responds to calls for interdisciplinary research that captures the complexity of contemporary business transformation.

Ultimately, in an era defined by both digital disruption and ecological urgency, the organisations poised for enduring resilience and legitimacy will be those that master the art of strategic convergence. They will be led not by technologists or environmentalists in isolation, but by integrators who can harness the transformative power of digitalisation and channel it unequivocally toward building a sustainable future.

**Funding:** This research received no external funding.

**Conflicts of Interest:** The authors declare that no potential conflicts of interest in publishing this work.

**Publisher's Note:** European Academy of Sciences Ltd remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

**Disclaimer:** The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of European Academy of Sciences Ltd and/or the editor(s). European Academy of Sciences Ltd and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

## References

Abbes, I. (2025). Strategic pathways for innovation and sustainability in digital transformation: Insights from leading global companies. *Social Sciences & Humanities Open*, 12, 101906. <https://doi.org/10.1016/j.ssaho.2025.101906>

Al-Hajri, A., Hamouda, A. M., & Abdella, G. M. (2025). Sustainability-based strategic framework for digital transformation in the oil and gas industry. *IEEE Access*, 13, 52114–52133. <https://doi.org/10.1109/ACCESS.2025.3548960>

Alsafran, M. A., Awad, Y. A., Alsaber, A., Almutairi, S., & Al-Kandari, A. (2025). Assessing gamification and corporate sustainability: The role of embracing digital transformation and open innovation in ecosystem. *Management & Sustainability: An Arab Review*. <https://doi.org/10.1108/MSAR-11-2024-0196>

Astriyani, I., Fathia, Usman, E., Jurana, J., & Mustamin, M. (2025). Digital transformation and strategic decision-making: A behavioral perspective on business innovation. *Journal of Strategic Innovation in Economics and Business*, 1(2), 18–35. <https://doi.org/10.65101/sinebis.v1i2.124>

Bani Hani, L. Y. (2025). Editorial: Business transformation: Global perspectives on innovation, sustainability, and digital disruption. *Dibon Journal of Business*, 1(2), 83–85. <https://doi.org/10.64169/djb.102>

Billi, A., & Bernardo, A. (2025). The effects of digital transformation, IT innovation, and sustainability strategies on firms' performances: An empirical study. *Sustainability*, 17(3), 823. <https://doi.org/10.3390/su17030823>

Ramesh, K. V. (2023). Strategic approaches to global business in emerging markets – pathways to sustainable growth. *Anusandhanvallari*, 2023(1). <https://doi.org/10.52783/anusandhanvallari.394>

Suljic, V. (2025). Strategic leadership in AI-driven digital transformation: Ethical governance, innovation management, and sustainable practices for global enterprises and SMEs. *SBS Journal of Applied Business Research*, 13(1), 17–35. <https://doi.org/10.70301/JOUR/SBS-JABR/2025/13/1/2>

Yao, J., Zhang, Y., Sun, Y., & Bo, Q. (2025). Study based on managerial compensation incentives and analyst attention perspectives of corporate digital transformation and sustainability performance. *Scientific Reports*, 15(5). <https://doi.org/10.1038/s41598-025-21194-0>

Yu, J. (2025). The impact of digital transformation on the sustainability of innovation: Based on the dual mediating mechanism of supply chain resilience and supply-demand coordination costs. *Journal of Applied Economics and Policy Studies*, 18(5), 92–99.

Zhang, Y., & Li, X. (2025). Digital transformation and continuous green innovation of enterprises: An empirical research based on intermediaries and regulation mechanisms. *WSEAS Transactions on Computer Research*, 13, 187–205. <https://doi.org/10.37394/232018.2025.13.19>

Zhang, Y., Zhao, W., & Liu, H. (2024). Effect of digital transformation in sports companies on green innovation: Evidence from listed companies in China. *Sustainability*, 16(19), 8346. <https://doi.org/10.3390/su16198346>



© 2025 by the author(s). Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<http://creativecommons.org/licenses/by/4.0/>).